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Summary. We propose two kernel based methods for detecting the time direction
in empirical time series. First we apply a Support Vector Machine on the finite-
dimensional distributions of the time series (classification method) by embedding
these distributions into a Reproducing Kernel Hilbert Space. For the ARMA method

we fit the observed data with an autoregressive moving average process and test
whether the regression residuals are statistically independent of the past values.
Whenever the dependence in one direction is significantly weaker than in the other
we infer the former to be the true one.
Both approaches were able to detect the direction of the true generating model for
simulated data sets. We also applied our tests to a large number of real world time
series. The ARMA method made a decision for a significant fraction of them, in
which it was mostly correct, while the classification method did not perform as well,
but still exceeded chance level.
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1 Introduction

Consider the following problem: We are given m ordered values X1, . . . , Xm

from a time series, but we do not know their direction in time. Our task is
to find out whether X1, . . . , Xm or Xm, . . . , X1 represents the true direction.
The motivation to study this unusual problem is two-fold:

(1) The question is a simple instantiation of the larger issue of what char-
acterizes the direction of time, which is an issue related to philosophy and
physics [13], in particular to the second law of thermodynamics. One possible
formulation of the latter states that the entropy of a closed physical sys-
tem can only increase but never decrease (from a microphysical perspective
the entropy is actually constant in time but only increases after appropriate
coarse-graining the physical state space [1]). This may suggest the use of en-
tropy criteria to identify the time direction in empirical data. However, most
real-life time series (such as that given by data from stock markets, EEGs,
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or meteorology) do not stem from closed physical systems, and there is no
obvious way to use entropy for detecting the time direction. Moreover, we
also want to detect the direction of stationary processes.

(2) Analyzing such asymmetries between past and future can provide new
insights for causal inference. Since every cause precedes its effect (equivalently,
the future cannot influence the past), we have, at least, partial knowledge of
the ground truth [4].

In this work we propose the classification method for solving this problem:
Consider a strictly stationary time series, that is a process for which the
w-dimensional distribution of (Xt+h, Xt+1+h . . . , Xt+w+h) does not depend
on h for any choice of w ∈ N. We assume that the difference between a
forward and backward sample ordering manifests in a difference in the finite-
dimensional distributions (Xt, Xt+1 . . . , Xt+w) and (Xt+w, Xt+w−1 . . . , Xt).
For many time series we thus represent both distributions in a Reproducing
Kernel Hilbert Space and apply a Support Vector Machine within this Hilbert
Space.

In [14] Shimizu et al. applied their causal discovery algorithm LINGAM
to this problem. Their approach was able to propose a hypothetical time
direction for 14 out of 22 time series (for the other cases their algorithm did
not give a consistent result); however, only 5 out of these 14 directions turned
out to be correct. Possible reasons for this poor performance will be discussed
below. Nevertheless, we now describe the idea of LINGAM because our ARMA
method builds upon the same idea. Let ǫ be the residuum after computing
a least squares linear regression of Y on X for real-valued random variables
X,Y . If X and ǫ are statistically independent (note that they are uncorrelated
by construction) we say that the joint distribution P (X,Y ) admits a linear
model from X to Y . Then the only case admitting a linear model in both
directions is that P (X,Y ) is bivariate Gaussian (except for the trivial case of
independence). The rationale behind LINGAM is to consider the direction as
causal that can better be fit by a linear model. This idea also applies to causal
inference with directed acyclic graphs (DAGs) having n variables X1, . . . , Xn

that linearly influence each other.
There are three major problems when using conventional causal inference

tools [11, 16] in determining time series direction. First, the standard frame-
work refers to data matrices obtained by iid sampling from a joint distribution
on n random variables. Second, for interesting classes of time series like MA
and ARMA models (introduced in Section 2), the observed variables (Xt)
are not causally sufficient since the (hidden) noise variables influence more
than one of the observed variables. Third, the finitely many observations are
typically preceded by instances of the same time series, which have not been
observed.

Besides the classification method mentioned before we propose the follow-
ing ARMA approach: for both time directions, we fit the data with an ARMA
model and check whether the residuals occurring are indeed independent of
the past observations. Whenever the residuals are significantly less dependent
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for one direction than for the converse one, we infer the true time direction
to be the former. To this end, we need a good dependence measure that is
applicable to continuous data and finds dependencies beyond second order.
Noting that the ARMA method might work for other dependence measures,
too, we use the Hilbert Schmidt Independence Criterion (HSIC) [7]. This re-
cently developed kernel method will be described together with the concept
of Hilbert Space embeddings and ARMA processes in Section 2. Section 3
explains the method we employ for identifying the true time direction of time
series data. In Section 4 we present results of our methods on both simulated
and real data.

2 Statistical Methods

2.1 A Hilbert Space Embedding for Distributions

Recall that for a positive definite kernel k a Hilbert space H of functions
f : X → R is called a Reproducing Kernel Hilbert Space (RKHS) if k(x, .) ∈
H ∀x ∈ X and 〈f, k(x, .)〉 = f(x) ∀f ∈ H. Here, k(x, .) denotes a function
X → R with y 7→ k(x, y). We can represent received data in this RKHS using
the feature map Φ(x) := k(x, .).

We can further represent probability distributions in the RKHS [15]. To
this end we define the mean elements µ[P](.) = EX∼Pk(X, .), which are vec-
tors obtained by averaging all k(X, .) over the probability distribution P.
Gretton et al. [6] now introduced the Maximum Mean Discrepancy (MMD)
between two probability measures P and Q, which is defined in the following
way: mapping the two measures into an RKHS via P 7→ µ[P], the MMD is
the RKHS distance ‖µ[P] − µ[Q]‖H between these two points. Assume the
following conditions on the kernel are satisfied: k(x, y) = ψ(x − y) for some
positive definite function ψ, and ψ is bounded and continuous. Bochner’s
theorem states that ψ is the Fourier transform of a nonnegative measure
Λ. Assume further that Λ has a density with respect to the Lebesgue mea-
sure, which is strictly positive almost everywhere. It can be shown that under
these conditions on the kernel the embedding µ is injective [17] and there-
fore the MMD is zero if and only if P = Q. Note that the Gaussian kernel
k(x, y) = exp

(

− ‖x − y‖2/(2σ2)
)

on Rd satisfies all conditions mentioned
above. In our experiments we chose 2σ2 to be the median of all distances
‖x− y‖2, following [6].

If only a finite sample (X1, . . . , Xm) of a random variable is given we can

estimate the mean element by µ[P̂X
m] = 1

m

∑m

i=1 k(Xi, .). If the kernel is
strictly positive definite the two function values are the same if and only if
the samples are of the same size and consist of exactly the same points. In
this sense these Hilbert space representations inherit all relevant statistical
information of the finite sample.
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2.2 Hilbert Schmidt Independence Criterion

As mentioned earlier, the ARMA method requires an independence criterion
that is applicable to continuous data. The Hilbert-Schmidt Independence Cri-
terion (HSIC) is a kernel based statistic that, for sufficiently rich Reproducing
Kernel Hilbert Spaces (RKHSs), is zero only at independence. The name re-
sults from the fact that it is the Hilbert-Schmidt norm of a cross-covariance
operator [7]. Following [15], we will introduce HSIC in a slightly different way,
however, using the Hilbert Space Embedding from Section 2.2.
For the formal setup let X and Y be two random variables taking values
on (X , Γ ) and (Y, ∆), respectively; here, X and Y are two separable metric
spaces, and Γ and ∆ are Borel σ-algebras. We define positive definite kernels
k(., .) and l(., .) on the spaces X and Y and denote the corresponding RKHS
as HX and HY , respectively. The product space (X × Y, Γ ⊗ ∆) is again a
measurable space and we can define the product kernel k(., .) · l(., .) on it.
X and Y are independent if and only if P(X,Y ) = PX ⊗ PY . This means a
dependence between X and Y is equivalent to a difference between the distri-
butions P(X,Y ) and PX ⊗ PY .
The HSIC can be defined as the MMD between P(X,Y ) and PX ⊗ PY . It
can further be shown [7] that for a finite amount of data, a biased empirical
estimate of HSIC is given by a V-statistic,

ĤSIC = m−2trHKHL,

where H = 1− 1
m
· (1, . . . , 1)t(1, . . . , 1), K and L are the Gram matrices of the

kernels k and l respectively, and m is the number of data points. Under the

assumption of independence (where the true value of HSIC is zero), m · ĤSIC
converges in distribution to a weighted sum of Chi-Squares, which can be
approximated by a Gamma distribution [9]. Therefore we can construct a test
under the null hypothesis of independence.

2.3 Auto-Regressive Moving Average Models

Recall that a time series (Xt)t∈Z is a collection of random variables and is
called strictly stationary if (Xt1 , . . . , Xtn

) and (Xt1+h, . . . , Xtn+h) are equal
in distribution for all tj , h ∈ Z. It is called weakly (or second-order) stationary
if Xt has finite variance and

EXt = µ and cov(Xt, Xt+h) = γh ∀t, h ∈ Z,

i.e., both mean and covariance do not depend on the time t, and the latter
depends only on the time gap h.

Definition 1. A time series (Xt)t∈Z is called an autoregressive moving aver-
age process of order (p, q), written ARMA(p, q), if it is weakly stationary and
if
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Xt =

p
∑

i=1

φiXt−i +

q
∑

j=1

θjǫt−j + ǫt ∀t ∈ Z ,

where ǫt are iid and have mean zero. The process is called an MA process if
p = 0 and an AR process if q = 0.

An ARMA process is called causal if every noise term ǫt is independent of
all Xi for i < t.

We call an ARMA process time-reversible, if there is an iid noise sequence
ǫ̃t, such that Xt =

∑p̃

i=1 φ̃iXt+i +
∑q̃

j=1 θ̃j ǫ̃t+j + ǫ̃t where ǫ̃t is independent
of all Xi with i > t.

In the theoretical work [18] and [2] the authors call a strictly stationary
process time-reversible if (X0, . . . , Xh) and (X0, . . . , X−h) are equal in dis-
tribution for all h. However, this notion is not appropriate for our purpose
because, a priori, it could be that forward and backward processes are both
ARMA processes even though they do not coincide in distribution.

3 Learning the True Time Direction

3.1 The Classification Method

In Section 2.1 we saw how to represent a sample distribution in an RKHS.
Given a training and a test set we can perform a linear SVM on these rep-
resentations in the RKHS. This linear classifier only depends on pairwise dot
products, which we are able to compute:

〈 1

m

m
∑

i=1

k(xi, .),
1

n

n
∑

j=1

k(x̃j , .)
〉

=
1

mn

m
∑

i=1

n
∑

j=1

k(xi, x̃j) . (1)

Note that this method allows us to perform an SVM on distributions. We note
that this is only one possible kernel on the space of probability measures; see
[8] for an overview.

We now apply this idea to the finite-dimensional distributions of a time
series. Each time series yields two points in the RKHS (correct and reversed
direction), on which we perform the SVM. The classification method can be
summarized as follows:

• Choose a fixed window length w and take for each time series many finite-
dimensional samples Xt1 = (Xt1 , . . . , Xt1+w), Xt2 = (Xt2 , . . . , Xt2+w),
Xtm

= (Xtm
, . . . , Xtm+w). The ti can be chosen such that ti+1−(ti +w) =

const, for example. The larger the gap between two samples of the time
series, the less dependent these samples will be (ideally, we would like to
have iid data, which is, of course, impossible for structured time series).
Represent the distribution of (Xt, . . . , Xt+w) in the RKHS using the point
1
m

∑m

i=1 k(Xti
, .) .

• Perform a (linear) soft margin SVM on these points using (1) for comput-
ing the dot product.
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3.2 The ARMA Method

We state without proof the following theorem [12]:

Theorem 1. Assume that (Xt) is a causal ARMA process with iid noise and
non-vanishing AR part. Then the process is time-reversible if and only if the
process is Gaussian distributed.

If a time series is an ARMA process with non-Gaussian noise, the reversed
time series is not an ARMA process anymore. Theorem 1 justifies the following
procedure to predict the true time direction of a given time series:

• Assume the data come from a causal ARMA process with non-vanishing
AR part and independent, non-Gaussian noise.

• Fit an ARMA process in both directions to the data (see e.g. [3]) and
consider the residuals ǫt, ǫ̃t respectively.

• Using HSIC and a significance level α test if ǫt depends on Xt−1, Xt−2, . . .
or if ǫ̃t depends on Xt+1, Xt+2, . . . and call the p-values of both tests p1

and p2, respectively. According to Theorem 1 only one dependence should
be found.
If the hypothesis of independence is indeed rejected for only one direction
(i.e. exactly one p-value, say p1, is smaller than α) and additionally, p2 −
p1 > δ, then propose the direction of p2 to be the correct one.

• If the noise seems to be Gaussian (e.g. perform the Jarque-Bera test [5])
do not decide.

• If both directions lead to dependent noise, conclude that the model as-
sumption is not satisfied and do not decide.

For the method described above, two parameters need to be chosen: the
significance level α and the minimal difference in p-values δ. When α is smaller
and δ is larger, the method makes fewer decisions, but these should be more
accurate. Note that for the independence test we need iid data, which we
cannot assume here. The time series values may have the same distribution
(if the time series is strictly stationary), but two adjacent values are certainly
not independent. We reduce this problem, however, by not considering every
point in time, but leaving gaps of a few time steps in between.

Note that the ARMA method only works for ARMA processes with non-
Gaussian noise. Gaussianity is often used in applications because of its nice
computational properties, but there remains controversy as to how often this
is consistent with the data. In many cases using noise with heavier tails than
the Gaussian would be more appropriate (e.g. [10]).

4 Experiments

Simulated Data.

We show that the methods work for simulated ARMA processes provided that
the noise is not Gaussian distributed. We simulated data from an ARMA(2,2)
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time series with fixed parameters (φ1 = 0.9, φ2 = −0.3, θ1 = −0.29 and
θ2 = 0.5) and using varying kinds of noise. The coefficients are chosen such
that they result in a causal process (see [3] for details). For different values of
r we sampled

ǫt ∼ sgn(Z) · |Z|r,

where Z ∼ N (0, 1), and normalized in order to obtain the same variance for
all r. Only r = 1 corresponds to a normal distribution. Theorem 1 states that
the reversed process is again an ARMA(2,2) process only for r = 1, which
results in the same finite-dimensional distributions as the correct direction.
Thus we expect both methods to fail in the Gaussian case. However, we are
dealing with a finite amount of data and if r is close to 1, the noise cannot
be distinguished from a Gaussian distribution and we will still be able to fit
a backward model reasonably well.

The classification method performed well on the simulated data (see Fig-
ure 1). Notice, however, that using the same coefficients in all simulations
makes the problem for the SVM considerably easier. When we used different
parameters for each simulated time series the classification method performed
much worse (at chance level), while the ARMA method could still detect the
correct direction in most cases.
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Fig. 1. Classification method on the ARMA processes. For each value of r (i.e. for
each kind of noise) we simulated 100 instances of an ARMA(2,2) process with fixed
coefficients and divided them into 85 time series for training and 15 for testing; this
was done 100 times for each r. The graph shows the average classification error on
the test set and the corresponding standard deviation.

For the ARMA method we fit an ARMA model to the data without making
use of the fact that we already know the order of the process; instead we used
the Akaike Information Criterion which penalizes a high order of the model.
If we detected a dependence between residuals and past values of the time
series, we rejected this direction, otherwise we accepted it. Obviously, for the
true direction we expect that independence will only be rejected in very few
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cases (depending on the significance level). For the independence test we used
a significance level of α = 0.01. See Figure 2 for details.

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2
0

0.2

0.4

0.6

0.8

1

r

ac
ce

pt
an

ce
 r

at
io

 

 

forward
model
backward
model

Fig. 2. For each value of r (expressing the non-Gaussianity of the noise) we sim-
ulated 100 instances of an ARMA(2,2) process with 500 time points and show the
acceptance ratio for the forward model (solid line) and for the backward model
(dashed line). When the noise is significantly different from Gaussian noise (r = 1),
the correct direction can be identified.

Real World Data.

In order to see if the methods are applicable to real data as well, we col-
lected data consisting of 200 time series with varying length (from 100 up
to 10,000 samples) from very different areas: finance, physics, transportation,
crime, production of goods, demography, economy, EEG data and agricul-
ture. Roughly two thirds of our data sets belonged to the groups economy
and finance.
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Fig. 3. Classification method on the time series collection. 500 times we chose
randomly a test set of size 20, trained the method on the remaining 180 time series
and looked at the performance on the test set. For the SVM regularization parameter
we chose C = 10, which resulted in a training error of 29.8%±1.8% and a test error
of 35.7 ± 10.5%. We reached the same performance, however, for values of C which
were several orders of magnitude lower or higher.
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Since the performance of the ARMA method strongly depends on the cho-
sen parameters, we give the results for different values. The classification con-
sistently exceeds 50%; and for more conservative parameter choices, a larger
proportion of time series are correctly classified. See Figure 4 for details.
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Fig. 4. ARMA method on the time series collection. We cut the longer time series
into smaller pieces of length 400 and obtained 576 time series instead of 200. We
show the results for different values of the parameters: the minimal difference in
p-values δ ranges between 0% and 20%, and the significance level α between 10%
and 0.1%. The point with the best classification performance corresponds to the
highest value of δ and the lowest value of α.

5 Conclusion and Discussion

We have proposed two methods to detect the time direction of time series.
One method is based on a Support Vector Machine, applied to the finite-
dimensional distributions of the time series. The other method tests the va-
lidity of an ARMA model for both directions by testing whether the residuals
from the regression were statistically independent of the past observations.

Experiments with simulated data sets have shown that we were able to
identify the true direction in most cases unless the ARMA processes were
Gaussian distributed (and thus time-reversible). For a collection of real world
time series we found that in many cases the data did not admit an ARMA
model in either direction, or the distributions were close to Gaussian. For a
considerable fraction, however, the residuals were significantly less dependent
for one direction than for the other. For these cases, the ARMA method mostly
recovered the true direction. The classification method performed on average
worse than the ARMA method, but still exceeded chance level.

Classification accuracies were not on par with the classification problems
commonly considered in machine learning, but we believe that this is owed to
the difficulty of the task; indeed we consider our results rather encouraging.
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It is interesting to investigate whether there are more subtle asymmetries
between past and future in time series that cannot be classified by our ap-
proach (i.e., if there is a simple generative model in the forward but not the
backward direction in a more general sense). Results of this type would shed
further light on the statistical asymmetries between cause and effect.
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